EXTRACTING DYNAMICS

dimensionality of the phase space within which the
attractor is embedded.

Dynamic Systems and Phase Space

; The study of chaotic dynamics provides a new and
i stimulating approach to the study of fluid flow. The
basic proposition is that relatively simple systems of
i coupled nonlinear first-order equations often have
- chaotic solutions. These solutions -~ sometimes called
. strange attractors -- are much more irregular than
{ solutions of deterministic equations. This has
v generated the hypothesis that some of the fluid flow
! problems can be qualitatively explained by models that
are highly simplified in comparison with full
‘ hydrodynamic ecquations. While the dynamic systems
approach has not yet achieved much quantitative

‘ predictive power at the present, it has provided a

ﬂgsignifjcanL new direction of study.
H

Extracting Dynamics from
Ocean Wave Time Series Datal
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Abstract

Recent developments in chaotic dynamics have
indicated that qualitative information of a dynamicgl i
system can be extracted from the observation of a single
time series as the time series bears the marks of all
other variables relevant in the underlying dynamics. .
this paper we review this approach and explore its
possible applications to ocean wave dynamics.

Following Lorenz (1963) we consider a dynamic
system formally as:

, dy/dt = F(y), (1)
Introduction . . . ) .
— : ‘where time t is the single independent varable, y = (y;,
The study of ocean wave dynamics has been done '} :¥2.-..Yn) represents a state of the system and may be

generally using the equations of motion. The difficult
in verifying the theoretical analysis with measurement%&
lies in the specification of an initial state that t
requires the measurement of functions over a three- !
dimensional domain. Acquisition of such measurements:i
usually prohibitive. Typical experiments employ wave
probes that produce time series of surface fluctuat%on$
only. A time series of one variable generally provide
a limited amount of dynamical information. Recent .
developments in chaotic dynamics have advanced theorem
that furnish a procedure for reconstructing a dynamica
system from the observation of a single variable.
a time series bears the marks of all other variables
relevant in the underlying dynamics, and key.featurgs{o\
the dynamics can be extracted from a given time serlg#?
In this paper we expect to explore the chantic dynamic
approach and its application to the‘stgdy‘of ocean wav%
dynamics. Specifically we examine if it is possible
identify an attractor for an ocean wave Ctime series and
determine its dimensionality as well as the minimal

thought of as a point in a suitably defined space --
usually called phase space, and the vector field F(y) is
vin general a non-linear operator acting on points in the
Yphase space. A state which is varying in accordance

ith (1) is represented by a moving particle traveling
long a trajectory in phase space. The trajectory
ibecomes a strange attractor when it is chaotic,
ensitively depends on the initial conditions, and it is
iattracted to a bounded region in phase space.

Many current studies on chaotic dynamics have
.focused on understanding and characterization of strange
ttractors. strange attractors can be generally
haracterized through quantities like Kolmogorov
[ntropy, Lyapunov exponents, and generalized dimensions.
1f the governing equations are known, then there are
JYeliable methods for determining these quantities. 1If
bowever only measurements of time series are available,
hen the problem becomes much more difficult. 1In this
paper we expect to pursue this latter course without
‘ : }mmediately resorting to our established knowledge of
1GLERL contribution No. 732 Y ocean wave dynamics. In particular, we are primarily
20ceanographer, NOAA/Great Lakes Environmental Researchy® interested in the applicability of the various
Laboratory, 2205 commonwealth Blvd., Ann Arbor, MI 481 Bpproaches of characterizing strange attractors and

determining basic degrees of freedom of the system that
£ '
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govern the quantitative predictability of the dynamic
system.

Kolmogorov Entropy

Due to the sensitivity of the chaotic dynamic
system to the initial conditions, trajectories arising
from two different but indistinguishable initial
conditions, within a given precision, will evolve into

distinct states after a finite interval of time. Thus
chaotic trajectories reveal new informations about the
system continuously. The Kolmogorov entropy (Komogorov,

1959) has been used to measure the rate at which
information is being created by the dynamical system.
It is zero for non-chaotic and infinite for random
systems. A finite and positive Komogorov entropy
usually implies deterministic chaos. Dectailed studies

of Komogorov entropy were given in Farmer et al. (1983),

Grassbeger and Procaccia (1983) and others.

Lyapunov Exponents

Lyapunov exponent quantifies the local dynamical
behavior or the average stability of trajectories on an
attractor that are determined by the response of the
system to small pertubations. Positive Lyapunov
exponents generally indicate orbital divergence of the
trajectory and hence chaotic motion. For non-chaotic
systems all exponents are negative or zero. Algorithms
have been developed to extract the Lyapunov exponents of
an attractor reconstructed from a measured time series,
e.g., Wolf et al. (1985), Eckmann and Ruelle (1985), and
recently Bryant et al. (1990). A comparison of the
various earlier algorithms for determining Lyapunov
exponents from experimental data is given in Vastano and
Kostelich (1986).

Generalized Dimensions

Dimension is one of the most basic properties of
geometric objects. Basically the dimension of a space

is the amount of information needed to specify points in{

the space accurately. For dynamics the dimension
provides an indication of the number of essential
variables required to represent the dynamics. The
dimensionality of a phase space, since it controls the

number of possible states, will thercfore be associated :

with the number of a priori degrees of freedom of the
system. There are many possible characterizations of
dimension, among them the correlation dimension
introduced by Grassberger and Procaccia (1983) has
become the most widely used approach for estimating
generalized dimension from time series data. A detailed
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review and analysis of this method is given by Theiler
(1988) .

Reconstruction of an Attractor

Perhaps one the most interesting and enticing
results developed from the chaotic dynamics is the
motion that it is possible to reconstruct certain
properties of an attractor in phase space from the time
series of a single variable. Following the earlier
works of Packard et al. (1980) and Takens (1981), the
basic principle is to create a set of m-dimensional
vectors from a single time series xj = x(tj), i =
1,...,N, with the xj corresponding to measurements in
“time. This process is known as ‘embedding’ and m is the
‘embedding dimension’. The reconstruction is

i accomplished by introducing a time lag p such that the
‘m-dimensional vectors have the form

Xi = [x(ti), X(ti *+ p),..., X(tji + (m - 1)p)]. (2)

In principle, the various characterizations -- the

Komogorov entropy, the Lyapunov exponents, and the '
.generalized dimensions -- are all accessible through
this reconstruction (Simm et al., 1987). '

Concluding Remarks

With this very brief note serving as a review and

; summary, we have outlined the various aspects we expect
i to pursue in order to explore the chactic dynamics

approach and its application to the ocean waves.
Detailed analyses of measured ocean wave time series

L will be presented at the conference.
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apunov exponents from:

STABILITY OF NEARLY BREAKING LONG WAVES

Nikolaos D. Katopodes ! Member ASCE

This paper addresses the development of equations for nonlinear
dispersive waves that have improved stability propertics over the com-
monly uscd Boussinesq-type cquations. Boussinesg-type cquations are
unstable in the short-wave regime, which, although outside the range
f applicability of the Boussinesq cquations, do appear in the numeri-
cal solution of long wave problems as the latter approach the shoreline
d begin to break. The basic hypothesis for the devclopment of sta-
le equations is that the Hamiltonian corresponding to Boussinesq-type
‘equations cither docs not exist at all or becomes negative in the pres-
ience of very short waves. This is due to the insufficient approximation
of the kinctic encrgy of the flow, which in the presence of short waves,
ails to remain positive. The present work sceks approximations of the
inetic cnergy that remain positive regardless of wave length.

tIntroduction

L]

The mathematical foundation for nonlinear dispersive waves is pro-
ided by the theory of Boussinesq, which allows moderate curvature of
the frec surface. Certain terms appear in the governing equations that
taccount for the cffects ol wave dispersion. These terms are typically
of order ju == (Ii/ L)%, where I is the water depth and L a typical wave
Hength. For very long waves the O(yr) terms are negligible, thus allow-
Ing the ordinary shallow-walter equations to be recovered. In theory, the
oussinesq cquations are limited to finite but small wave amplitude, due
) the fact that their derivation is based on an expansion of the flow
uantilics in a power scrics of a small parameter, € = a/h, where a
a measure ol the wave amplitude. Subsequently, the equations are

1 Associate Professor, Department of Civil Engineering, University
f Michigan, Ann Arbor, M1 48109
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This proceedings, Mechanics Computing in 1990's and Beyond,
consists of extended abstracts of the papers presented at the
Engineering Mechanics Conference held in Columbus, Ohio,
May 19-23,71991. The first volume is divided into three parts:
1) Computational mechanics, 2) fluid mechanics, and 3) bio-
mechanics. Within these broad topics, volume one discusses
such specialized subjects as: 1) Neural network computing; 2)
symbolic processing; 3) damage mechanics; 4) ocean wave
dynamics; 5) fluid-structure interaction; 6) joint kinematics; and
7) contact problems in biomechanics. Volume two is con-
cerned with structural and material mechanics including such
topics as: 1) Vibration analysis of structures; 2) chaotic vibra-
tions; 3) fracture and failure analysis; 4) seismic analysis;
5) microstructure analysis: and 6) micromechanics.
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